
How to Secure SSH with
Google Two-Factor Authentication

WELL, SINCE IT IS QUITE COMPLEX
TO SET UP, WE’VE DECIDED TO

DEDICATE A WHOLE BLOG TO THAT
PARTICULAR STEP!

A few weeks ago we took a look at how to secure Open
SSH in 10 steps, and one of those steps was how to secure
SSH using Two-Factor Authentication. Well, since it is quite

complex to set up, we’ve decided to dedicate a whole blog
to that particular step!

As you all know, there are multiple types of Two-Factor
Authentication device, but Google offers the required
software to integrate Google Authenticator’s time-based,
one-time password (TOTP) system with your SSH server.
Securing SSH with 2-Factor Authentication (2FA) allows you
to add an extra layer of security by verifying the user identity
with something they know (username and password) and
something they have (their mobile phone or the Google
Authenticator application).

https://blog.devolutions.net/2017/04/10-steps-to-secure-open-ssh.html
https://blog.devolutions.net/2017/04/10-steps-to-secure-open-ssh.html
https://blog.devolutions.net/2016/10/most-popular-2-factor-authentication-2fa-compared.html
https://blog.devolutions.net/2016/10/most-popular-2-factor-authentication-2fa-compared.html

2

Step 1- Install Dependencies

To install the package, you’ll need to have root or sudo privileges on the machine you wish to secure your SSH with 2FA using
Google Authenticator.

First, update your Ubuntu’s repository cache with the
following command:

Next, run the following command to install the
required dependency package for Ubuntu:

Google Authenticator has also released a Pluggable Authentication Module (PAM), with packages available on Debian/Ubuntu. If
your Linux distribution doesn’t contain a package for this, you can download one from the Google Authenticator downloads page
and compile it yourself.

A little warning before we start: if you activate Google Authenticator for a user but not for root, you won’t be able to connect with
the root user directly anymore. Instead, you’ll have to login as the new user first, and then switch to the super user using the su
command to access the root.

What you need to follow this tutorial:

• Ubuntu 16.04.2 LTS server with a sudo non-root user, SSH key, and firewall enabled.

• A smartphone or tablet with the Google Authenticator app installed (iOS, Android).

Ready? So let’s get started!

3

This will install the PAM module on your machine and will also install libqrencode3, which allows you to use your camera’s phone
to scan the qr-code directly from the console.

Using the PAM, you will now be able to generate TOTP keys for each user who will be using 2FA. Each key is generated on a
user-by-user basis rather than a system-wide basis. As such, every user will need to log in and run the app to get their own key.

PAM allows for time-based or sequential-based tokens, meaning the code starts at a certain point and then increments the code
after every use. The code will change randomly after a certain time lapse, and since the Google Authenticator apps are designed
for this, we suggest answering ‘yes’ (y) to this question.

To run the initialization app, log in as the user you’ll
be logging in with remotely and enter the following
command:

Allow the command to update your Google Authen-
ticator. After running the command, you’ll be asked a
couple of questions, the first one being:

You’ll then be presented with a secret key and
multiple “scratch codes”. We strongly suggest saving
these emergency scratch codes in a safe place, like a
password manager. These codes are the only way to
regain access if you lose your phone or lose access to
your TOTP app, and each one can only be used once,
so they really are in case of emergency.

4

You’ll then be prompted with several questions used
to direct the PAM’s functioning. These choices are all
about balancing security with ease-of-use. Let’s take a
close look at each question:

This will write the key and options to the .google_
authenticator file. If you say no, the program quits
and nothing is written, which means the authenticator
won’t work. Unless you have a good reason not to,
enter ‘yes’ (y) to this question.

For security reason we strongly suggest answering
‘no’ (n) here in order to maintain a limit of 3 valid
codes in a 1:30-minute rolling window. Answering
‘yes’ would allow up to 8 valid codes in a 4:00-minute
rolling window.

We suggest answering ‘yes’ (y) since rate-limiting means that a remote attacker can only attempt a certain number of guesses
before being blocked. Rate-limiting is a great hardening technique to use.

That concludes the initial setup for the Google Authenticator PAM module. The next step is it to tell SSH about the PAM module
and configure SSH to use it.

This part is a time-based login. We suggest
answering ‘yes’ (y) here since this will prevent a
replay attack, allowing you 30 seconds from the point
of getting the code on your mobile to typing in your
login prompt, and then disallowing reuse of the same
code immediately after. This will prevent a hacker
attack from getting a code you have just used,
thereby preventing the hacker from trying to log in.

5

Step 2- Configuring OpenSSH

To avoid locking yourself out of your server if a problem or a mistake occurs in your SSH configuration, it’s essential never to close
your initial SSH connection. Simply open another SSH session to proceed with testing. Once you have verified that everything
works properly, you can then close your session safely.

To begin, open your PAM configuration file:

Then add the following line to the file:

Save the changes and close the file. Then, you’ll
need to configure SSH to support the authentication
method. Open the SSH configuration file:

Locate the ChallengeResponseAuthentication line,
and change its value to ‘yes’.

6

Save the changes and close the file. Then you’ll
need to restart your SSH server for the changes to
take effect.

Step 3- Setup the Google Authenticator App

It’s now time to setup the app on your SmartPhone. Install the Google Authenticator and open it up. From the main screen, tap
Settings and Set up account. In the new window, tap Enter provided key. Then, in the Manual account entry screen, enter the
secret key that was provided to you in Step 1, give the entry a name, select Time based from the drop-down and tap Add. It will
then generate a one-time verification code (pin number) that will change every 30 seconds.

Step 4- Login to Your Computer via SSH

Test everything by opening another terminal and try logging in over SSH. First you’ll be prompted for your user password. Once
the password authenticates, you’ll be asked for the Google Authenticator verification code.

Your OpenSSH now has an extra layer of security! I would say that it’s quick and easy to do, but for once I won’t – these steps can
take time, especially if you have multiple users to account for. But trust me, it’ll be worth the hassle knowing you’ll be able to sleep
like baby with servers that are safe and secure!

