
Using Rust Code in a C/C++ Project with CMake

A NEW SERIES CALLED
THE INSIDER SERIES

As you hopefully know, we publish different series in our blog.
For example, The Basics covers essential Remote Desktop
Manager functions, while Case Studies highlight examples of
IT pros using our products to solve their problems. And for

fun, there’s always our Monthly Poll and various quizzes (like
this recent one that measures your Geek Level).

Today, I’m happy to introduce you to a new series called the
Insider Series. As you might guess from the title, this series
features articles by Devolutions’ Software Developers and
explores the tools we use to develop our products. We hope
that you find this new series interesting and that you find
something for your own projects.

To get started, here’s my article called “Using Rust Code in
a C/C++ Project with CMake”.

https://blog.devolutions.net/2018/03/the-basics-data-sources
https://remotedesktopmanager.com/
https://remotedesktopmanager.com/
https://blog.devolutions.net/category/case-studies
https://blog.devolutions.net/category/case-studies
https://blog.devolutions.net/2018/05/quiz-how-geeky-are-you-2

2

I am currently working on Wayk Now written in C for the most part. We recently started writing new code for it
in Rust which I’m super excited about.

As we needed a way to integrate this code in our CMake build1, we wrote a set of modules for CMake which
can found on the following repository:

https://github.com/wayk/CMakeRust

CMakeRust makes it possible to generate a static library with cargo and use it as a dependency. We currently
handle the following:

•	 automatically find rustc and cargo
•	 build for Windows, Linux, macOS, Android and iOS
•	 build for 32 or 64 bit
•	 build in release or debug depending on the project configuration

A use-case we do not currently cover is adding a library as a dependency directly from crates.io, but rust librar-
ies in the project can use dependencies as usual.

HOW TO USE IT

Let’s go over a small example where we will generate a rust library and call its functions from C++. You can find
the completed example here.

We will start with a basic C++ project containing two files, CMakeLists.txt and main.cpp.

https://github.com/wayk/CMakeRust
https://github.com/ekse/cmake_rust_sample

3

First we copy the folder CMakeRust/cmake/ to our project and add the following lines to CMakeLists.txt to use
the modules.

Next we add a rust library, here I used the name test-lib. An important detail is that we need to set the crate
type to staticlib in the Cargo.toml.

To make functions accessible from C/C++ we annotate them with #[no_mangle] and declare them pub extern
“C”. Note that we only need to do this for the exported functions, it is not required for the code that is only
used inside the library.

In our library folder we create a CMakeLists.txt file with the following content. This tells CMake to generate the
library and make it available as a dependency.

4

We create a header file to declare the library functions and include it in main.cpp.

The last step is to add test-lib as a dependency to the executable. On Windows, we also need to add ws2_32
and userenv as the Rust runtime depends on them. Here is the final CMakeLists.txt.

We’re all set to call our function from our C++ program.

5

We can now generate the project and build our program.

1 found a really helpful answer on Stack Overflow that shows how to achieve this using ExternalProject. We
also came across RustCMake which does not seem to be actively maintained.

https://stackoverflow.com/questions/31162438/how-can-i-build-rust-code-with-a-c-qt-cmake-project
https://github.com/SiegeLord/RustCMake

