
Using an SSH Tunnel to Reach a Protected Server
– Part 1 – Local Port Forwarding

 EXAMINE A TOOL THAT IS
READILY AVAILABLE

TO ANYONE

How does one reach a remote server that is in a protected
zone? Maybe there is a firewall protecting the server, but you
simply must access that precious server. Naturally, exposing
the whole server to the internet is simply too risky. In comes
the SSH Tunnel to save the day.

There are many guides out there that use plain SSH
commands on *nix systems, but let’s help our Windows users
and examine a tool that is readily available to anyone. We will
use Putty to achieve our goals.

2

 Local

 Remote

 Dynamic

This post will focus on Local.

There are three types of SSH Tunnels:

Local Port Forwarding

In this procedure, we will demonstrate two different protocols being tunneled to remote servers:

 RDP to manage a protected server

 HTTP to reach a protected website

This diagram illustrates the main components that are involved. To minimize the surface area that is subject to potential attacks,
ONLY A SINGLE PORT is allowed through the firewall. By default, SSH uses port 22, but since it’s well-known and subject to casual
scans, it would add a level of complexity if you used another port. For simplicity sake, we’ll use the default ports in this procedure.

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

3

Here’s what we need to achieve:

The line is a good representation of the SSH tunnel – a port is opened on your local host, and whatever you send to that port goes
to the SSH Server, which forwards it to the remote host, on whichever port you specify.

In your Putty configuration, configure your Host Name and
Port of the SSH server. Enter a name in Saved Sessions,
and click Save.

STEP 1 – Specify SSH server
 details in Putty

4

In the Tunnels section (Connection – SSH – Tunnels),
configure a specific Source Port to be used as the local end
of your tunnel. We have elected to use 50001 because it’s in
the Ephemeral port range — i.e. a port that is not officially
reserved for any other services. For more information on
ephemeral ports, click here. In the Destination field, enter
the IP address of the remote server, followed by a colon,
then the destination port. This is an address that the SSH
Server must be able to reach. Since we are behind the
firewall, it is from its own local subnet.

Select Local to create a Local SSH Tunnel. Select Add to save
your tunnel settings. Finally, return to the root (Sessions) to
save your session again.

STEP 2 – Configure a tunnel for RDP

Once the configuration setup is complete and the Putty
session is up and running, open an RDP connection and
enter your local IP (127.0.0.1), along with the Local port that
you have specified in Putty — 50001 in this case.

As demonstrated above, by entering 127.0.0.1:50001 in
mstsc.exe, the connection is redirected to 192.168.1.11:3389

Here is an example of managing the 192.168.1.11
server using port 3389.

http://click here

5

We will make use of the fact that you may configure
multiple tunnels simultaneously. This time we’ll configure
Local port 50002 to redirect to 80 of the destination
server (192.168.1.12 in this case). Just close your tunnel and
load the session again in Putty.

Select Add, and then save your session.

To launch it, open your browser and set Localhost: 50002 as the server name. It will reach the remote host transparently.

Remember that both tunnels open as soon as your Putty session is running, enabling you to use them simultaneously.

In part 2, we’ll have a look at Dynamic SSH Tunnels.

STEP 3 – Configure a tunnel for HTTP

